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Chondrosarcoma Cell Differentiation

Experimental data and possible molecular mechanisms
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A mixed population of lymphocytes from a healthy
donor co-existed with an established culture of
allogeneic chondrosarcoma cells, during which
time the tumor cells changed from malignantly
transformed to benign fibroblast-like morphology;
from multilayered to a monolayered growth pat-
tern; lost their potency to grow in colonies in soft
agar; and showed signs of senescence. A discussion

of possible molecular mechanisms for this event is
offered. If there are as yet undiscovered lym-
phokines that can induce reversal of the malignant
geno/phenotype, the cognate gene(s) should be
cloned for genetic engineering and for the mass
production of the corresponding molecular media-
tors for clinical trials. (Pathology Oncology Research
Vol 10, No 3, 174-187)
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Introduction

Chondrocytes. Physiological differentiation of chondro-
cytes advances in stages.”'” The uncommitted mesenchy-
mal cells develop vimentin-positive and collagen type 2-
producer chondroprogenitor cells. These cells stain with
alcian blue. Mature chondrocytes produce collagen type
10 and alkaline phosphatase. Prior to that, hypertrophic
chondrocytes arise. These cells mineralize their matrix
and induce neoangiogenesis; in response, capillary sprouts
invade the matrix. Hypertrophic chondrocytes lose their
fibroblastic phenotype, produce the proteoglycan aggre-
can, but no fibronectin. They show metachromasia when
stained with toluidine blue. Their laminin receptor,
switches from a.6BB1 to a6AB1.'** Some of these cells
utilize the bone morphogenic protein and its receptor
(BMP-R) in an autocrine circuit and assume transdifferen-
tiation along osteocytic lineages. BMP, activins and inhib-
ins are members of the transforming growth factor f3
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(TGFB) family.'03#6L761517 TGER and BMP interact
with the Smad complex (vide infra) and with the mitogen-
activated protein kinases (MAPK). '"*'** Recombinant
human BMP-2 (th-BMP-2) acting through Indian hedge-
hog (Ihh, vide infra) gene transactivation promotes chon-
drocyte differentiation toward mature cartilage and/or
along osteocyte-osteoid pathways.''®

Chondrocyte differentiation is further regulated by the
interaction of chondrocyte inductive growth factors (GF)
and their antagonists. Insulin-like GF and its receptor (IGF-
R) promote chondrocyte differentiation, induce proteogly-
can production and upregulate p21"*"*' a growth inhibito-
ry protein (wild type p53 activated protein/cyclin-dependent
kinase interacting protein).****7>!12 Chondrocyte-specific
protein-10 elicits enchondral ossification; thereafter some of
the mature (senescent) chondrocytes die apoptotic deaths."*’

Parathyroid hormone-related peptide (PTHrP)*%%6%
initiates enchondral bone formation. BMP-2 is generated
by Smad 9; BMP-R crossactivates Smads 1, 5 and 9. The
Smads are signaling mediator proteins that shuttle from
cytoplasm to nucleus and recruit histone deacetylases. The
human smad genes are related to Drosophila genes mad
and proteins MAD: “mothers against deca-pentaplegic”
(DPP). MADRI1 is the human homologue of Drosophila
protein MAD. BMP4 is the vertebrate homologue of the
DPP protein,****3!%



Chondrosarcoma Cell Differentiation 175

The c-maf gene product protein c-Maf brings about ter-
minal differentiation of osteopontin-positive chondro-
cytes. The oncogene v-maf fused with the viral gag gene
was discovered in the avian retrovirus AS42. This retro-
virus transduced the ancient c-maf gene and induces mus-
culo-aponeurotic fibrosarcomas in chicken.®® The Maf
protein is active in multiple myeloma (for references,
see®).

Cyclooxygenase-2 (COX-2) and prostaglandin E2
(PGE2) (for references, see *°) are stimulators of chondro-
cyte differentiation. Yet these mediators are also expressed
in de-differentiated chondrocytes.****%%

Thh gene product proteins through their receptor (R)
“patched”, induce cartilage nodule formation. Ihh-to-R
“patched” interactions result in suppression of the initia-
tion of chondrogenesis and in down-regulation of Sox9.
Ihh accelerates terminal differentiation of chondrocytes
producing type 10 collagen.”'® The chondrocyte differ-
entiation transactivation factor, which mediates the main-
tenance of nonhypertrophic chondrocytes for PTHrP, is
also suppressed by Ihh. Transcription factor activating
transcription factor (ATF2) suppresses cyclin D1 and
upregulates decorin expression in chondrocytes.'"*’

Basic fibroblast GFs (bFGF) antagonize chondrocyte
differentiation by transactivating the gene encoding the
matrix Gla protein (MGP). This effect is abolished by
actinomycin D. bFGF antagonize IGE, which upregulates
MGP. TGFp induces Smads, the suppressors of osteo-
chondrogenic differentiation.>?*2043627882110 Tymor necro-
sis factor-a. (TNFa) activates the anti-apoptotic nuclear
factor kB (NFxB), suppresses Sox9 and antagonizes chon-
drogenesis.'"" The Sox genes are members of the mam-
malian sex determining gene family termed SRY-related
HMG-box genes and encode DNA-binding motifs of the
homeobox proteins.'” Activated signal transduction and
transcription factors (STAT) and upregulated p21%“*"/!
inhibit chondrocyte proliferation.®**** In transformed
cells, STAT contributes to the malignant pheno/genotype
(references cited ).

The Wnt family of proteins acting through their receptor
(R) “frizzled”, signal the translocation of Pcatenin into the
nucleus (Wnt4), or induce phosphatidyl-inositol-3 kinase
(PI3K) and protein kinase C (PKC).”**'?! PKCa and &
suppress de-differentiation of chondrocytes backward
toward mesenchymal progenitor cells of fibroblast-like
morphology. IGF-1 also inhibits de-differentiation
through PI3K/Akt and PKC activation by antagonizing
NFkB.%* PI3K, PKC and IGF significantly contribute to
the malignant behavior when mutated or constitutively
overactivated in tumor cells (references cited”). The RevT
reticuloendotheliosis retrovirus of turkeys carries the v-rel
gene, which derived from an ancient cellular c-rel gene.
The locus of the human c-rel gene is 2p14-15. The gene
product protein is the anti-apoptotic transactivator NFxB.
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The AKR mouse thymoma-inducing retroviral v-akt gene
derived from c-akt; the gene product protein Akt2 is a
proto-oncogene in the PI3K/Akt pathway (references
cited”).

The term Wnt stands for the fused genes “wingless”
from the fruit fly and int from the mouse. These genes
encode cognate ligands for the “fizzled” R. The not fused
Wnt genes are essential for normal embryonic develop-
ment including the formatting of cartilagenous tissues.
One Wnt pathway suppresses the enzyme glycogen syn-
thetase kinase 33, which eliminates catenin through pro-
teasomic degradation. BCatenin mediates the linking of
cadherin to the cytoskeleton. When Wnt is mutated and
Bcatenin is overexpressed due to faulty elimination, the
malignant behavior of transformed cells is enhanced. The
cystein-rich glycoproteins, Wntl and 5b are co-expressed
in hypertrophic chondrocytes. Wnt4 accelerates, Wnt5
delays chondrocyte hypertrophy; Wntl and 7 block chon-
drogenesis. The mediator of Wnt signaling, Bcatenin, sup-
presses chondrocyte differentiation. PTHrP also negative-
ly regulates this process. For chondrogenesis of mes-
enchymal stem cells, PKC activity is required. The PKC
proteins also function as proto-oncogenes (for references,
see **). Homeobox gene product proteins promote chon-
drocyte maturation through the pathway leading to post-
mitotic hypertrophy of chondrocytes. The homeobox-con-
taining gene DI1x5 is active during the conversion of
immature proliferating chondrocytes into postmitotic
hypertrophying chondrocytes and in periosteal bone for-
mation, thus this gene may also be an osteoblast matura-
tion regulator.”®

Connective tissue GFs (CTGF) are members of the
platelet-derived GF ligand-to-receptor (PDGF-R) family.
Proto-oncogene v-sis of the simian sarcoma retrovirus
derives from c-sis, which encodes the B chain of the ligand.
These are mitogenic ligands switched on and off, except
when mutated and constitutively overactivated in malignant
cells (references cited”®). CTGF expression in chondrosar-
coma cells decreases as tumor grade rises: in grade 1 tumors
84%, in grade 2 tumors 53% and in grade 3 tumors 27% of
the tumor cells express CTGE2#!717387.123

Chondrosarcoma cells. The two major types of chon-
drosarcomas originate centrally in a bone (central chon-
drosarcoma) or in the cartilaginous cap of an osteochondro-
ma (peripheral chondrosarcoma)." The ext1, 2 genes regu-
late FGF and Ihh/PTHrH-to-R signaling. When the sup-
pressor function of these genes is lost due to mutations, the
autosomal dominant multiple exostosis syndromes with
enchondromas set in. In hereditary multiple chondrosarco-
mas, these genes suffer germ cell mutations. There are no
detectable somatic mutations of these genes in sporadic
chondrosarcomas.'>*'* Expressions of FGF2, FGF-RI,
PTHrP, Bcel-2 and p21 genes and proteins increase with the
grade of malignancy in chondrosarcomas.®*®
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Mesenchymal chondrosarcomas™* originate from focal-
ly differentiating pre-chondrogenic cells. The low-grade
clear cell chondrosarcomas may de-differentiate into an
immature aggressive cell population.**** Chondrosarco-
mas may de-differentiate along various mesenchymal lin-
eages. In the myxoid variant of de-differentiated chon-
drosarcoma, there is a t(9;22)(q22-31;q11-12) transloca-
tion.”**'"¥ Increased Abl protein expression inhibits apop-
tosis of chondrosarcoma cells.”* The ancient c-abl proto-
oncogene was transduced by the Abelson murine leukemia
retrovirus (v-abl). The proto-oncogene c-erb2 is overex-
pressed in 90% of chondrosarcomas. The normal cartilage
is negative for the Erb2 protein. Erb2 protein expression is
inversely related with grade: low-grade chondrosarcomas
express more Erb2 protein than high-grade de-differentiat-
ed tumors.®*”” The avian erythroblastosis viruses trans-
duced the ancient cellular proto-oncogenes c-erbA and
c-erbB; the gene product proteins are members of the epi-
dermal growth factor receptor (EGF-R) family. In high-
grade de-differentiated chondrosarcomas assuming malig-
nant fibrous histiocytoma-like appearance, mutated p53 is
overexpressed, whereas low-grade tumors or cartilage are
negative for p53 deficiency."*™

The FGF-inducer protein Sox9 regulates differentiation
of multipotent stem cells along chondrogenic path-
ways.**!" Decorin and type 2 collagen mRNA levels rise.
The large 300 kDa isoform of the oligomeric glycoprotein
of extracellular matrix, tenascin, is overexpressd in chon-
drosarcoma cells.” When chondrosarcoma cells differenti-
ate toward more mature chondrocytic phenotype, they
assume metachromasia upon staining with toluidine blue.
Polyphenotypic differentiation’” may continue toward
rhabdo-myoblastic phenotypes positive for desmin. Clear
cell extraskeletal myxoid chondrosarcomas are S100-neg-
ative, enolase-positive and chromogranin A-positive.**?
Extraskeletal myxoid chondrosarcomas undergo gene
translocations resulting in neuroectodermal/endocrine dif-
ferentiation.”** FGF1, 2 induce type 2 collagen produc-
tion, whereas inflammatory cytokines IL13 and TNFa
suppress this effect. FGF9 counteracts cytokine-mediated
repression of Sox9: FGF is a Sox agonist.*’ The anti-
inflammatory cytokine IL-4 suppresses chondrosarcoma
cell proliferation.””* Dexamethasone also decreases chon-
drosarcoma cell proliferation and induces maturation of
tumor cells.*

When multipotential mesenchymal stem cells become
chondrocytes, the process is referred to as differentia-
tion.”>*' Resumption of the fibroblast-like morphology of
the mesenchymal stem cells is termed de-differentiation.
Under changed cultural conditions, de-differentiated chon-
drocytes re-differentiate and form cartilage.® In the case
of chondrosarcoma cells, could a retrograde change
toward chondrocytic and mesenchymal pre-chondrocytic
fibroblast-like stem cells, which are or are not yet malig-

nantly transformed, be considered to be in the realm of de-
differentiation?'” A resulting cell population resembling
that of malignant fibrous histiocytoma would display sig-
nificant gains in grade and malignancy. When progenitor
chondrosarcoma cells form myoblast-like cells, the
process is considered to be differentiation along lineages
deriving from immature mesenchyme toward more mature
cell types.*”” The polyphenotypic differentiation of a
malignantly transformed mesenchymal stem cell can be
envisioned as occurring simultaneously in several lin-
eages, of which one reaches dominance. The sarcoma sub-
type is determined by this dominant lineage, for example:
lipoblasts for liposarcoma. When the second and the third
sublineages emerge (for example: myoblasts or fibrohisti-
ocytoblasts) and overgrow the hitherto dominant lineage,
the term de-differentiation along these mesenchymal lin-
eages is applied. The original tumor cells do not retro-dif-
ferentiate to the level of the transformed multipotent mes-
encymal stem cell to start a new differentiation process.
Instead, the original progenitor cell was initiating concur-
rently several cell lineages along mesenchymal differenti-
ation pathways and these lines expressed varying degrees
of dominance. However, when a chondrosarcoma cell
population converts into an orderly monolayered sheet of
resting large fibroblast-like cells devoid of morphological
and biological features of mesenchymal stem cells and is
undergoing senescence, differentiation into an entirely
new direction is occurring.**%

An episode of in vitro lymphocyte-mediated apparent
differentiation of human chondrosarcoma cells was report-
ed in the mid-1970s.***” In the elapsed thirty years, no
comments were raised in the literature, neither in support
for, nor in objection to, this observation. In the present era
of molecular immunology, this phenomenon should be re-
investigated, because its mechanism could now be eluci-
dated. The earliest observations (1969-70) on the interac-
tions between autologous or allogeneic lymphocytes and
sarcoma cells are briefly recited in order to present this
remarkable occurrence in context.

Materials and Methods

The Patient. In 1968 a 58-year-old man, (#73587) (Fig-
ure 1), was admitted to the Solid Tumor (later:
Melanoma/Sarcoma) Service at the Department of Medi-
cine, The University of Texas M.D. Anderson Hospital,
Houston, TX.'""*'® The patient developed a very large
tumor within the bones of his right hemipelvis. An
extraosseous mass of the tumor eventually invaded the
ascending colon. By biopsy it was a chondrosarcoma with
infrequent mitoses of the tumor cells and with lymphocyt-
ic infiltrations at the periphery of the tumor. No distant
metastases were detectable. The patient was managed with
an ileostomy and catheterization of his urinary bladder;
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Figure 1. Tumor of a male patient (MDAH #73587) 58 years
of age

received radiotherapy and was treated with chemotherapy
(doxorubicin was not yet available), and was relieved with
a subarachnoid block and a prefrontal lobotomy for con-
trol of pain, anxiety and suffering. X-ray irradiated
(10,000 1) cultured autologous tumor cells were used to
immunize the patient by repeated vaccinations. His lym-
phocytes collected from the buffy coat were directly
injected into his tumor. No clinically measurable respons-
es to these treatment modalities were observed. He lived
two years and died with repeated gram-negative sep-
ticemias and endotoxin shock. A postmortem examination
revealed no metastases. He and his wife allowed several
biopsies of his tumor and he contributed several blood
samples for medical research.

Tissue Cultures. The cell line #1459 was established” in
November 1968 from a tumor sample obtained before
chemo-radiotherapy (Figure 2). Transmission electron
microscopy of the #1459 cell line was described before.'*
Several primary cultures were grown later from the
patient’s tumor. His normal fibroblasts were grown once
in 1969 in a primary (not established) culture from a sub-

cutaneous site not involved with tumor. Tissue cultures
were grown in T flasks, Leighton tubes and Sykes-Moore
chambers and were fed with fetal calf serum-containing
media in laminar air-flow hoods.

Blood Samples. The patient’s lymphoid cells were con-
centrated from the buffy coat by centrifugation or by the
ficoll-hypaque technique.'* His blood serum or plasma
samples were tested with or without heating at 56°C
against his primary and established tumor cell lines with
and without lymphocytes added. Fluorescein isothio-
cyanate-conjugated rabbit anti-human globulin immune
sera were used for immunofluorescence stains. Lympho-
cyte and serum samples of a healthy donor’s were tested as
controls against the patient’s tumor cells and fibroblasts.
In assays for lymphocyte-mediated cytotoxicity against
tumor cells, the number of lymphocytes exceeded tumor
cells 100-500 to 1.

Results

Cytotoxic lymphocytes. The patient’s lymphocytes
immediately surrounded his tumor cells in vitro and in 24
hours the lymphocytes killed the tumor cells (Figure 3).”°
These lymphocytes exerted no cytotoxicity on the
patient’s normal fibroblasts. Tumor cell death occurred by
nuclear clumping or by cytoplasmic lysis. The attacker
lymphocyte population consisted of small cells with com-
pact nuclei. Occasionally, larger lymphocytes with granu-
lar cytoplasm also participated in tumor cell lysis. Most
lymphocytes survived and preserved tinctorial characteris-
tics of live cells and could be extracted from cultures of
killed tumor cells, and when transferred into new cultures
of the patient’s tumor cells, the lymphocytes exerted cyto-
toxicity once again against the tumor cells. Occasionally,
single individual cells of the attacker lymphocyte popula-
tion appeared to disintegrate with nuclear clumping. The
patient’s serum samples rather inhibited, than promoted
lymphocyte-mediated cytotoxicity. By indirect immuno-

»"

Figure 2. Chondrosarcoma cell line #1459. Early passage 3 (a) and late passage 25 (b). The cultures consist of tumor cells devoid
of stromal cells. (Note: the highest passage number of #1459 cell line was 35).

Vol 10, No 3, 2004
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Figure 3. (a) Chondrosarcoma cell of culture #1459 is attacked by the patient’s (autologous) “small lymphocytes with compact
nuclei”. (b) Chondrosarcoma cells of culture #1459 die with cytoplasmic lysis and nuclear clumping under the attack of the
patient’s autologous small lymphocytes with compact nuclei. (Ektachrome #337; Sept 8, 1969)

fluorescence staining, the patient’s serum samples reacted
with cytoplasmic antigens expressed by the patient’s
tumor cells;'®'™ this reactivity appeared to be intensified
after repeated administrations of the autologous tumor cell
vaccine.

Lymphoid cell preparations of the healthy donor exerted
not prompt, but somewhat delayed cytotoxicity on the
patient’s tumor cells; some of these lymphocytes also
reacted with the patient’s fibroblasts. Serum samples of
the patient rather intensified, than inhibited the cytotoxic-
ity that the healthy donor’s lymphocytes exerted against
the patient’s tumor cells. The attacker lymphocyte popula-
tion of the healthy donor was dominated by large cells
with granular cytoplasm, but a few small lymphocytes
with compact nuclei also participated in the reaction (Fig-
ure 4).

Differentiation-inducer Iymphocytes. By late 1969 and
early1970, the 33™ passage of the established cell line
#1459 was deemed to be free of nontransformed stromal
cells.”® The healthy donor’s lymphocytes extracted from
the buffy coat and/or ficoll-hypaque purified were added
to the 33" passage of these tumor cells. This lymphocyte
population consisted of a mixture of large cells with gran-
ular cytoplasm (in majority) and small cells with compact
nuclei and less granulated cytoplasm (in minority). Con-
trary to expectations, the allogeneic lymphocytes exerted
cytotoxicity on the tumor cells only occasionally. Instead,
this lymphocyte population co-existed with the tumor cells
practicing emperipolesis and browsing over the tumor
cells (Figure 5). On rare occasions, some lymphocytes
were observed to die with nuclear clumping. During a co-
existence of 4 to 10 weeks, the number of lymphocytes

Figure 4. Chondrosarcoma cell of established culture line #1459 advanced passage™ exposed to allogeneic lymphocytes of healthy
donor’s. (a) “Large lymphocytes with granular cytoplasm” (later: NK cells) attach themselves to the membrane of the tumor cell
(arrows); “small lymphocytes with compact nuclei” (later: immune T cells) congregate around the tumor cell without launching an
attack. In contrast to figure 3a: in the autologous setting, small lymphocytes with compact nuclei dominate, whereas in the allogene-
ic setting large lymphocytes with granular cytoplasm lead the attack. (b) Comparison of large allogeneic lymphocyte (later: NK cell,
arrow) and small lymphocytes with compact nuclei (later: immune T cell) of the healthy donor JGS next to a tumor cell. These prob-
ably are the very first pictures published on human NK cells (photographed on Dec 3, 1969)* 1 attacking tumor cells.
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Figure 5. Chondrosarcoma cells #1459 from passage 33 is surrounded and browsed (“emperipolesis”) but not attacked by allogeneic
small lymphocytes with compact nuclei of the healthy donor’s. (Film #371; April 12, 1970)

gradually decreased in the co-cultures; by the 6™ week,
lymphocytes almost completely disappeared from the cul-
tures leaving behind an orderly monolayered sheet of large
cells of fibroblast-like morphology (Figure 6). These cul-
tures were almost completely devoid of the originally
explanted large tumor cells with lobulated nuclei, frequent

Figure 6. (a, b, ¢) Chondrosarcoma cells #1459 from passage 33 showing gradual change of morphology toward “fibroblast-like
appearance after prolonged exposure to lymphocytes of the healthy donor’s. (d) Small lymphocytes of the healthy donor persist in
remnants of a #1456 cell culture consisting of fibroblast-like cell islands that later underwent senescence and perished. Photograph
of a stained T flask culture representing a passage of cells from an original culture vessel in which #1459 cells and healthy donor’s
lymphocytes co-existed. (a, b, c on film #495; Dec 15, 1973)

Vol 10, No 3, 2004

multipolar divisions and disorderly growth pattern (cells
piling up on each other). The remaining large fibroblast-
like cells appeared to be in a resting phase with rare mitot-
ic figures and showed no metachromasia when stained
with toluidine blue or alcian blue. Previously, cells from
the 22™ passage of culture #1459 grew in colonies in soft

”
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agar. Tumor cells of culture #1459 did not grow in new-
born TIMCO Swiss or AKR mice after intravenous inocu-
lations.'” Samples of the fibroblast-like cells remaining
after the diminution in number of the lymphocytes from
the 33" passage of culture #1459 were collected for in
vitro passages and for inoculation into soft agar. There was
no colony formation in soft agar. During attempted pas-
sages in culture, the large fibroblast-like cells showed
signs of senescence and eventually perished.

Discussion

Cytotoxicity assays. In 1969 and up to the mid-1970s,
lymphocyte-mediated cytotoxicity assays performed in the
hundreds in chamber-slide or Leighton tube cultures fre-
quently failed to distinguish the tumor-specific reactions of
immune T cells (allowing cross-reactions between related
tumors) from the indiscriminate cytotoxicity of NK cells.
Figure 7. shows how the young male patient (MDAH
#87551) with primary osteogenic sarcoma and well-pre-
served pre-therapy immune status yielded mixed lympho-
cyte populations suppressing equally the growth of soft tis-
sue and bone sarcoma cells and that of two carcinoma cell
lines.” Within the short observation period of hundreds of
similar assays,”>® either target cell death or emergence of
target cell colonies resistant to lymphocyte-mediated cyto-
toxicity could regularly be observed, while tumor cell dif-
ferentiation, if it occurred, could have escaped recognition.

Possible laboratory errors. This report is based on a pre-
liminary publication.” The following possible experimental
errors were considered but are regarded as most unlikely: 1.
Inadvertent exchange of culture vessels. The culture vessels
were clearly marked with indelible ink, and technicians
were highly skilled to avoid cross-contamination of tissue
culture cell lines. 2. Morover, the morphological appear-
ance of the cultures did not change suddenly (“overnight”)
but set in slowly and gradually in quadruplicate cultures.
Fibroblast-like cells undergoing senescence and small
islands of cells resembling the original tumor cells co-exist-
ed. 3. The buffy coat and even the ficoll-hypaque purified
donor lymphocyte preparations contained small numbers of
monocytes-macrophages.'* Could it be that conversion of
these cells into fibroblast-like cells occurred? Both the
patient and the donor were of the male gender, thus simple
karyotyping could not have settled the issue. If the experi-
mental cultures were accidentally contaminated with
healthy donor fibroblasts, the normal fibroblasts obeying
Hayflick’s rules could not have overgrown the immortal-
ized chondrosarcoma cells. The same vein of reasoning
applies to inadvertent cross-contamination with the
patient’s fibroblasts. However, if donor monocytes formed
stromal cells in these cultures, organ-specific differentiation
of cancer cells induced by stromal cells could remotely be
considered. Multiple genetic and epigenetic signaling aber-

rations that drive malignant cells could be corrected by stro-
mal cells of the microenvironment both in vivo and in vitro
in tissue cultures (for references, see 2*°). However, allo-
geneic healthy lymphocytes have not been listed among the
stromal cells that induced “tumor reversion”.

Possible errors of interpretation. It is difficult to arrive
by conjecture at the correct conclusion as to how chon-
drosarcoma cells were induced to undergo differentiation.
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Figure 7. Effect of peripheral lymphocytes on the growth of
human sarcoma cells in vitro. A young male patient
(MDAH#87551) with primary osteogenic sarcoma yielded buffy
coat lymphocytes: 3.36x10° lymphocytes were set against 4x10°
tumor cells per Leighton tube. The top 3 curves show squamous
cell carcinoma of the uterine cervix cell line #2043; osteogenic
sarcoma cell line #1757; and rhabdomyosarcoma cell line #2089.
The mid 3 curves show chondrosarcoma cell line #1459; osteo-
chondrosarcoma cell line #2322; and ovarian carcinoma cell line
#2043 (for reference, see®). The patient’s lymphocyte population
inhibited the growth of all tumor cell lines against which it was
tested. Stained preparations revealed that small compact lym-
phocytes acted against bone sarcoma cells; a mixed lymphocyte
population consisting of small compact and large granular cells
attacked rhabdomyosarcoma cells; and large granular lympho-
cytes dominated in the attack against carcinoma cells.
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Figure 8. (a) Chondrosarcoma cells from culture #1459 are attacked by autologous lymphoctes of patient MDAH73587. The attack-
er cells are small lymphocytes with compact nuclei (later: immune T cells). Some lymphocytes show nuclear clumping (arrows).
Film #352; Oct 6, 1969). (b) McAllister’s rhabdomyosarcoma cell line (received from American Culture Collection on December
14, 1970) is attacked by large lymphocytes with granular cytoplasm (later: NK cells) from patient (MDAH#85779) with rhab-
domyosarcoma; some small lymphocytes with compact nuclei (later: immune T cells, arrows) participate in the attack .

The genes that promote chondrocyte differentiation from
the fibroblast-like pluripotential mesenchymal cell for-
ward (Thh; IGF; p21;**""! CTGF; D1x5; PGE,) may not
be those that can arrange regression from the immature
transformed chondroblastic stage backward to the fibrob-
lastic stage.'> 7712

Chondrocytes react to inflammatory (IL-1a, IL-6, TNFa,
IFNy, IL-8/CXCL8) and anti-inflammatory (IL-4, IL-10)
cyto-, lympho- and chemokines in rheumatoid and
osteoarthritis,”*"* and IFNo was claimed to have sup-
pressed micro-metastases of osteosarcoma (references
cited’"), but it remained untested how chondrosarcoma cells
in culture would have reacted to these molecular mediators.

Lymphocytes. Human chondrocyte-senescence in
osteoarthritis®® may hold a key to the understanding of the

phenomenon described herein. The levels of the senes-
cence-associated enzyme [-galactosidase correlate
inversely with telomere length: the higher are the levels,
the shorter are the telomeres. Shortening of telomeres
comes with cessation of mitoses, declining synthetic activ-
ities and loss of responsiveness to growth factors. Dor-
mant clones of lymphocytes may exist in healthy individ-
uals (or in patients suffering with osteoarthritis), and may
undergo clonal expansion upon encounter with autologous
or allogeneic transformed cells overexpressing telomeras-
es. If a healthy blood donor happens to be in the process of
rejecting an incipient clone of malignantly transformed
cells (practicing Burnet’s “immunosurveillance”) at the

time of blood withdrawal and the lymphocytes thus
obtained are used in an assay against allogeneic malignant

Figure 9. (a) Small autologous lymphocytes with compact nuclei (later: immune T cells) of patient MDAH73587 induce nuclear
disintegration of a chondrosarcoma cell from culture #1459. The lymphocytes preserve the good tinctorial features of viable live cells
except for one that undergoes nuclear clumping (arrow). (b) Early passage (passage 2) of rhabdomyosarcoma culture #1449 from a
female patient is exposed to lymphocytes of another patient with rhabdomyosarcoma'. Small lymphocytes with compact nuclei line
up at, but do not attack, an allogeneic fibroblast-like cell. One large lymphocyte with granular cytoplasm (later: NK cell, arrow)
attacks and lyses an allogeneic tumor cell. (Film #352; Oct 6, 1969)

Vol 10, No 3, 2004
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Figure 10. (a) Cells from chondrosarcoma cell line #2454 from a 75-year-old male patient (MDAH #87288)% set in culture on
October 14, 1971 are attacked by autologous lymphocytes inducing nuclear disintegration of the tumor cells, while many attacker
lymphocytes also suffer nuclear clumping (arrows). (b) Established cell line #3743 set in culture on February 27, 1973 from a

malignant cystosarcoma phylloides tumor of the female breast from patient (MDAH #95749)%. A tumor cell shows nuclear disin-
tegration (arrow), some lymphocytes undergo nuclear clumping (arrow). (Film #417; June 6, 1973)
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Figure 11. (a) Tissue section of the chondrosarcoma of patient (MDAH #73587). (b) Passage 25 of #1459 cells.”

Figure 12. Indirect immunofluorescence assay with the patient’s sera against washed cells of culture #1459 (preparations of Dr.

Eiichi Shirato). (a) Pre-immunization. (b) After repeated immunizations'® with X-ray irradiated autolgous tumor cells from cul-

ture #1459. Antibodies reacting with cell surface and/or cytoplamic antigenic epitopes circulated in the patient’s blood."”'" Pre-
sumably, antibody-coated epitopes were not recognized by the patient’s immune T cells (“blocking serum factors”). Conceivably,
the cytotoxicity of “large granular lymphocytes” was intensified by the antibodies (“unblocking serum factors”) due to interactions
with Fc receptors (not known to be functional in the late 1960s).
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Figure 13. (a, b) Autologous “small lymphocytes with compact nuclei” destroy #1459 tumor cells. In these cases, immune T cells
exert more cytoplasmic lysis than nuclear clumping on the tumor cells. (Film #328; Sept 12, 1969)

cells, the expanding anti-telomerase subclone of the lym-
phocyte population may induce telomere shortening and
senescence in the malignant cells. Whereas such lympho-
cyte populations of tumor-bearing patients, akin to defec-
tive tumor-infiltrating lymphocytes in melanoma, for
example,” are suppressed by molecular mediators
released from the tumor, or by “blocking” serum factors
concealing antigenic epitopes from immune T cells, thus
the tumor prevails. In absence of such antibodies, in tissue
cultures, autologous lymphocytes may re-exert their cyto-
toxicity. Indeed, T cell mediated anti-telomerase immune
reactions can be generated in patients.'”® Analogously,
tumor cells overexpressing survivin induce the expansion
of an autologous clone of immunoreactive lymphocytes
(for references, see”).

Anticancer cell surveillance is not restricted to NK
cells.” Point-mutated (Ras, HER2/neu) or fusion oncopro-
teins (Abl/Bcr) are recognized by T cells and are attacked
in the tumor-bearing host; the list includes p53.'* Exam-
ples of such autoreactive clones are those that recognize
B-cell differentiation antigens CD19 and CD20; or CEA

b

epitopes.'®’" It is now indubitable that allogeneic adoptive
immunotherapy (for CML and kidney carcinoma) induces
tumor cell death and remissions at the price of severe
graft-vs-host disease. Hidden in its efficacy, adoptive
immunotherapy with healthy allogeneic lymphocytes (T
cells; NKT cells) may also be inductive to tumor cell dif-
ferentiation in tumor-bearing recipients.

In the early 1970s lymphocyte subtyping was based on
morphological criteria.”” The “small lymphocytes with
compact nuclei” were recognized later as immune T cells.
The unusual “large lymphocytes with granular cytoplasm”
were first (in 1969) misidentified as representatives of a
nonphagocytic monocytic lineage;'®® or that they were
blastic reactive forms of the smaller lymphocytes acquir-
ing immune reactivity to allogeneic cells anew in vitro; or
that the healthy donor being a medical oncologist through
repeated exposure to “cancer viruses” at the bedside gen-
erated “cancer-immune lymphocytes” in vivo.*** Howev-
er, by the early 1970s the large lymphocytes with granular
cytoplasm and indiscriminate cytotoxicity to cancer cells
were referred to as “the lymphocytes practicing Burnet’s

Figure 14. Allogeneic (from the healthy donor) mixed lymphocyte populations, consisting of “large granular lymphocytes” and “small
compact lymphocytes,” co-exist with the patient’s #1459 tumor cells. No lymphocyte-mediated cytotoxicity to tumor cells is evident
(a). Some of the attacker small and large lymphocytes succumbe to nuclear clumping (b). (Film #334; Jan 15, 1970)
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immune surveillance”.*’*’ In other laboratories a few
years later these very same lymphocytes became designat-
ed to be natural killer (NK) cells.” Nevertheless, the pho-
tographs taken in 1969-73 at the Section of Clinical Tumor
Virology and Immunology at M.D. Anderson Hospital and
shown in this report and elsewhere remain the very first to
depict human NK cells attacking allogeneic tumor
cells.”**>**?7 Due to the possession of FcR, not yet recog-
nized to be functional in 1970, it could be observed, but
not explained at that time, that the cytotoxicity of the large
lymphocytes with granular cytoplasm (NK cells) was thus
intensified by antibodies. As to the tumor-specificity of
the small lymphocytes with compact nuclei (later: immune
T cells), they cross-reacted between soft tissue sarcoma
cells or chondro- and osteosarcoma cells but not with
Ewing’s sarcoma cells, keeping in line with a subsequent
recognition that Ewing sarcoma cells arise from a stem
cell lineage different from that of osteochondrocytes.'®- 1%
The large lymphocytes with granular cytoplasm (later: NK
cells) exerted indiscriminate cross-reactivity between var-
ious types of tumor cells not distinguishing sarcoma,
melanoma and cancer cell targets. There were no reliable
laboratory procedures available in the early 1970s to sep-
arate immune T cells from NK cells. Acting in unison and
always overlapping (Figure 7), these two major classes of
cytotoxic lymphocytes could be distinguished by morpho-
logical criteria, since the dominant lymphocyte population
was the immune T cell in the autologous settings, and the
NK cell in the allogeneic settings (Figure 8). Their bio-
logical differences appeared as inhibition of immune T
cells versus intensification of NK cells by antibodies.
Immune T cells preferred to kill by nuclear clumping,'®
not known then that it was by programmed cell death
(apoptosis) exogenously induced by cognate ligands
through death receptors; whereas NK cells favored cytol-
ysis,”*?71% but not exclusively so, not known then that it
was due to the release of granzymes and perforins (Figure
9). In the vicinity of tumor cells more immune T cells
appeared to die by nuclear clumping than NK cells™ (Fig-
ure 9,10). For what was a puzzle then, now Fas ligand
released by tumor cells can be incriminated for the
destruction of Fas receptor-positive immune T cell clones
of the host.'®

Recapitulation. Figure 11 show the patient’s tumor cells
in a histological section and in tissue culture; his sera
reacting with his tumor cells in an indirect immunofluo-
rescence assay before and after active tumor-specific
immunizations (Figure 12); the patient’s “small lympho-
cytes with compact nuclei” (immune T cells) attacking his
tumor cells in vitro (Figure 13); and coexistence of the
healthy donor’s mixed lymphocyte population (“large
lymphocytes with granular cytoplasm”, later: NK cells;
and “small lymphocytes with compact nuclei”, later:
immune T cells) with the patient’s tumor cells (Figure 14).
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