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Infection with the human immunodeficiency virus 
(HIV) causes gradual depletion of CD4+ T helper 
lymphocytes and destruction of the lymphoid tis- 
sue, which ultimately leads to a fatal defect of the 
cellular immune system. Paramount to the under- 
standing of the pathogenesis of HIV infection is to 
elucidate the mechanism which underlies the loss 
of T helper cells. Various ideas have been proposed 

in order to explain this issue. Several hypotheses 
have focused on the role of the envelope glycopro- 
tein in this process. This review summarizes the 
data obtained and concepts proposed regarding the 
involvement of the HIV glycoprotein in the pathol- 
ogy of CD4+ T cell deple t ion .  (Pathology O n c o l o g y  
Research Vol 3, N o  1, 62-67, 1997) 
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Introduction 

Recent studies which demonstrate rapid turnover i. e. 
death and replacement of CD4+ T cells during human 
immunodeficieny virus (HIV) infection, support the con- 
cept that the gradual deterioration of the cellular immune 
functions in HIV infected individuals is the result of a phys- 
ical loss of CD4+ T helper cells. ~4 In addition; the obser- 
vation that the proliferative response of mononuclear cells 
to mitngens and recall antigen is reduced in infected indi- 
viduals suggests that functional defects of the T helper cell 
population develop during disease progression. 4'5 The 
decline of the CD4+ T lymphocyte number in the peripher- 
al blood and the CD4+ T lymphocyte malfunction is 
accompanied by continued destruction of the lymphoid tis- 
sue. <7 Multiple hypotheses have been proposed in order to 
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explain the mechanisms underlying the alterations in the 
CD4+ T helper lymphocyte population during the course of 
HIV-1 infection. Most of these concepts were established 
from experimental in vitro investigations or are based on 
empirical data obtained by studies using primary mononu- 
clear cells from infected individuals. However, it has not 
been clarified which of the ideas are relevant to the in vivo 
situation. Several of the hypotheses focus on the envelope 
glycoprotein and suggest that this molecule plays a partic- 
ular role in the depiction of CD4+ T lymphocytes during 
the course of infection with HIM. This review summarizes 
and evaluates the data that were generated regarding the 
function of the glycoprotein in this process. 

The HIV-1 envelope glycoprotein 

The HIV-I glycnprotein gpl60 is composed of the two 
glycoprotein molecules gp4l and gpl20. Upon budding of 
the virus from the infected cell, it is incorporated into the 
viral lipid membrane envelope. The gp41 molecule is 
anchored in tile lipid bilaycr and contains a cytoplasmic 
region, a transmcmbrane portion and an extracellular part 
which is non-covalently linked to the gpl20 molecule. 
The gpl20 glycoprotein is located completely outside the 
membrane and easily shed from the viral surface. ~'') This 
molecule contains several regions whose genetic sequence 
is relatively well preserved in different viral isolates, des- 
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ignated C1-C4, and the regions V1-V5 which display sub- 
stantial genetic variability. The cellular receptor for gpl60  
is the T cell receptor molecule CD4. Contact of gpl20 
with the CD4 molecule is mediated by a discontinous 
CD4-binding domain located in the C2, V4, C4 and C5 
regions.~~ In addition, for entry of the virus into the cell, 
additional sequences possibly located in the V3 region 
have to interact with the coreceptor, j2~~ These coreceptors 
are members of the chemokine receptor family such as 
CCR-5 and CXCR-4 (fusin/LESTR) and possibly CCR-2b 
and -3.142o Interaction of gpl20  with CD4 and the core- 
ceptor may result in conformational changes of the glyco- 
protein which exposes the fusogenic peptide of gp41 for 
interaction with the plasma membrane of the host cell. 2j 

Cell-cell fusion and the formation of syncytia 

After virus infection and upon replication of HIV in the 
cell, gp l60  is inserted in the cellular membrane before 
viral particles bud from the surface. Interaction of cells 
expressing the HIV envelope glycoprotein on the surface 
with cells expressing the CD4 molecule and members of 
the chemokine receptor family causes fusion of the cells] 6 
The fusion process requires the expression of the complete 
gpl60 molecule in a fashion that allows intracellular 
cleavage to gp41 and gp120 and mutations in the cleavage 
site abolish the formation of syncytia. 22 Cell-cell fusion 
can be extensive and result in the formation of large syn- 
cytia, a phenomenon which is readily observed in HIV- 
infected CD4+ T lymphoblast cultures. 23 z5 Because syn- 
cytia are not viable for an extended time period in vitro 
and the formation of syncytia coincides with the death of 
the infected cell culture, it was hypothesized that cell-cell 
fusion may undcrly T cell depletion in the infected indi- 
vidual.e~ _,5 However, an important argument raised against 
this hypothesis is the experience that syncytia are rarely 
detectable m vivo, and lymphoid tissue does not exhibit 
massive syncytium formation) >-2s 

Although this argument lead to the introduction of  mul- 
tiple additional hypotheses, scveral lines of evidence sup- 
port the view that cell-cell fusion plays a role in vivo. For 
instance, cell-cell fusion products which contain dendritic 
cells possibly fused with T helper lymphocytes have been 
found in adenoidal lymphoid tissue. ~'~-3. Similarly, syncy- 
tia are readily detectable in the central nervous system 
where they arc composed primarily of cells of the mono- 
cytic lineage including microglial  cells and macro- 
phages. 3-''33 The view that syncytia may occur in lymphoid 
tissue in vivo is further supported by an in vitro model sys- 
tem in which blocks of human tonsils were kept in long- 
term histoculture and small syncytia could be generated by 
implantation of glycoprotein-expressing cei ls)  4 In addi- 
tion, the experience that syncytia are not easily detected in 
lymphoid tissue may ira part be due to the fact that the lyre- 

phoid organs are densely packed with lymphocytes, a fact 
which makes it difficult to identify small syncytia by his- 
tologic analysis. ~5 

An additional point which has to be considered is that 
formation of large syncytia in cell culture is not observed 
with all viral isolates. HIV-1 strains have therefore been 
termed as either syncytimn-inducing (SI) or non-syn- 
cytium-inducing (NSI) according to the ability to form 
syncytia and to cause cytopthology after infection of MT- 
2 cells. -~<~7 In addition, virus isolates of the S1 phenotype 
are typically T cell-tropic and NSI virus strains are 
macrophage-tropic. The phenotypic differencc is mirrored 
by genotypic differences betwccn these groups in the VI-  
V2 and V3 region 3s~9 and the ability to form syncytia cor- 
responds to the presence of  a particular HIV corecep- 
tot. 17~s4~ It was previously suggested that a shift in the 
dominance from NSI to SI isolates in the peripheral blood 
of infected individuals correlates with the progression of 
disease; a concept which favors the assumption that SI 
viruses are more virulent than NSI isolates and implies 
that syncytium formation plays a role in T helper cell 
depletion. 4~a2 However, this may not always be the case, 
since the viral phenotype does not necessarily correlate 
with progrcssion to AIDS. 4~'4a Moreover, it was demon- 
strated that isolates which have been classified as NSI 
strains in MT-2 cells may still cause i-usion of a few cells 
without progression to large syncytia 45 or cvcn result in 
overt syncytium formation and cytopathology in primary 
T cells 4~ and other cell culture systems. 47 

The notion that cytopathology associated with cell-cell 
fusion may constitute a relevant mechanism of T cell 
depletion in vivo is further supported by the observation 
that cell-cell fusion products may be more fragile than pre- 
viously appreciated. For instance, contact of primary 
CD4+ T cells with envelope-expressing B lymphoblasts 
results in rapid lysis of a significant fraction of the cells in 
a few hours and the formation of relatively few and small 
syncytia. In contrast, contact of  glycoprotein-expressing 
cells with transformed T cell lines like Jurkat and CEM 
induces the generation of large syncytia and no detectable 
cell lysis for more than 8 hours of incubation, as Additional 
data fl'om our laboratory obtained by quantitative flow 
cytometric analysis demonstrate that coincubation of 
envelope glycoprotein-expressing cells with unstimulated 
primary PBMC causes selective disappearance of the 
majority of normal CD4+ T cells in a matter of hours by 
both syncytium formation and rapid cell death. 4') 

Accumulation of glycoprotein-CD4 complexes 

Several viral proteins including the envelope glycopro- 
tein have been implicated in mcdiating direct cytopathici- 
ty (reviewed in: 50). For instance, expression of gpl60  
(but not gp 120) in CD4+ T lymphoblasts induces the death 
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of single cells by apoptosisP T M  Since the expression of 
gpl6( /causes  retention of  the CD4 molecule in the endo- 
plasmatic reticulumY it was hypothesized that the cyto- 
pathicity observed is due to the accumulation of gpl60- 
CD4 complexes at nuclear pores which may affect the 
transport of biomolecules to and from the nucleus. ~5 

Binding of  gpl20 to the CD4 molecule: induction of  
anergy and mediation of  antibody-dependent cellular " 
cytotoxicity 

There is some evidence that gpl20 shed from the virion 
surface and fi'om infected cells is present in sera of HIV- 
infected individuals > and may bind to the CD4 molecule on 
T lymphocytes. -~7 It was proposed that this interaction may 
interfere with normal antigen-specific activation of T cells 
simply by masking the CD4 antigen for interaction with 
MHC class II molecules. 5s This interaction may contribute 
to the functional defects of the ceJlular immune response 
which precedes the decline of CD4+ T-cells in HIV-infected 
individuals. 5<' Moreover, it was demonstrated in vitro that 
glycoprotein-specific antibodies can crosslink CD4 mole- 
cules when they are coated with soluble gp 120. This process 
reduces interleukin-2 production) ~ inhibits proliferation of 
the T helper lymphcytes {'x and renders the cells anergic, <'~ 
possibly by initiating phosphorylation and activation of the 
tyrosin protein kinase p5@k. <'4 Upon subsequent activation 
of the cells through the T cell receptor these cells will be 
hyporesponsiv& 4 and undergo programmed cell death) 567 
F'inally, by adhesion of the HIV glycoprotein to tile CD4 
molecule, uninfected cells will be recognized and lysed by 
natural and lymphokinc-activatcd killer cells which present 
anti-gp120 antibodies on their surface bound to Fc receptors. 
This antibody-dependent cellular cytotoxicity has been 
shown by several groups to be effective in vitro/'s 7~ 

Autoimmunity 

In addition to the mechanisms described above several 
other characteristics have been attributed to the HIV enve- 
lope glycoprotein. These include the induction of autoim- 
munity based on structural similarities detected between the 
HIV-I envelope glycoprotein and immunologically impor- 
tant molecules such as MHC class I1 antigens, the Fas/Apo- 
1 protein and functional domains of immunoglobulins 7z'r~ 
and superantigen-like activation of particular V T cell sub- 
sets in vitro. ;4 However, these observations have not been 
uniformly confirmed and are still a matter of dispute] 5'v6 

Apoptosis 

Cells may die either by necrosis or by apoptosis. Necrotic 
cell death may be regarded as non-physiologic because it is 
usually the result of physical or chemical alterations in the 

environment causing damage to the cellular metabolism or 
structure. This type of cell death causes in vivo secondary 
damage to neighbonring cells by enzymes and toxic prod- 
ucts released by tile dying cell and induces an inflaimnato- 
ry response in the affected tissue. In contrast, apoptotic cell 
death is the outcome of a process intrinsic to a particular 
cell during which the cell actively starts and executes its 
own death program upon signaling from outside or infec- 
tion of the cell. In tile course of apoptosis, tlle cell disinte- 
grates into membrane-enveloped subcellular particles, so 
called apoptotic bodies, which contain cytoplasm, morpho- 
logically intact organelles and parts of the nucleus. 
Apoptotic bodies are subsequently taken up and digested by 
neighbouring cells including macrophages and epithelial 
cells. The apoptotic cell death does not cause an inflamma- 
tory reaction (reviewed in: 77,78). Similar to tile induction 
of necrosis, multiple stimuli and events can give rise to 
apoptotic cell death. Therefore, the presence of apoptotic 
cells in a particular tissue does not provide any indication as 
to which mechanism underlies the cell death observed. 

Several studies have demonstrated an increased inci- 
dence of apoptotic cell death in H1V infect ion)  ~v') 
However, in HIV-inlected individuals an increased inci- 
dence of apoptosis after in vitro stimulation has not only 
been observed with CD4+ T cells but also with CD8+ T 
cells when compared with cells from unifected con- 
trois, s~ A possible explanation for this observation is 
that in HIV infection both CD4+ and CD8+ T cells are 
activated. Stimulation of lymphocytes in the wake of a 
viral infection may cause increased levels of  apoplotic 
lymphocyte death, s~ Alternatively, apoptosis of CD4+ 
and CD8+ T lymphocytes are due to different processes. 

Signs of apoptotic cell death were detected in various in 
vitro studies, most of which have been linked to the enve- 
lope glycoprotein. As outlined above, antigenic activation 
of helper cells, which were previously rendered anergic by 
crosslinking of CD4 molecules, results in lymphocyte apop- 
tosis)  5 In addition, accumulation of gp 160-CD4 complexes 
in infected cells may cause single cell apoptosis. 5; 
Alternatively, it was demonstrated that contact of HIV gly- 
coprotein-expressing cells with CD4+ T cells causes the 
CD4+ T cells to rapidly die by apoptosis in cell culture, s~s4 
In this system, apoptotic cell death occurs upon contact of 
gpl60 and the CD4 molecule s>*<~ and depends on the pre- 
sentation of a cleavable gp 160 molecule on the celhllar sur- 
face. s~<j{~ In addition to the CD4-binding region, the V3 loop 
seems to be critical because point mutations in this area and 
monoclonal Ab directed at this region which inhibit cell- 
cell fusion but not binding to the CD4 molecule abolish 
induction of apoptosis ')~ and rapid cell lysis)  s Apoptotic 
cell death upon interaction of infected with uninfected cells 
can be detected in single cells and in cells fused in syncy- 
tia, 'v's~ both in prima W CD4+ T lymphocytes ~5~ and in T 
lymphoblasi cell lines. ~~4'a'~a'x')-~ 
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C o n c l u s i o n s  

Although the hypotheses presented are not mutually 
exclusive, they cannot  be unified to a single conccpt. 
However,  several of  the hypotheses are l inked by a com- 
mon prerequisite for induction of apoptosis or may 
describe related processes. For instance, gp120 shed by 
infected cells constitutes the basis of ant ibody-dependent  
cellular c y t o t o x i c i t y ,  CD4 masking,  crosslinking and 
induction of anergy with subsequent  apnptosis. The exer- 
lion of such mechanisms  requires some kind of immune 
response, either celktlar or humoral.  Alternatively, syn- 
cytium formation,  rapid lysis and induction of  apoptosis 
were described as a result of  the interaction of gp160 on 
the cell surface of infected cells with uninfected CD4+ 
lymphocytes.  Crucial to the latter concept is that HIV 
replicatcs in vivo. In these circumstances,  the cytopathic- 
ity observed should correlate with the proportion of H1V- 
infected and virus-replicating cells. The fact that primary 
CD4+ T cells die in a matter of  days after infection with 
HIV in cell culture indicates that virus infection in vitro 
is highly cytotoxic in the absence of  any iron-rune 
response. 

C o m m o n  to the two groups of hypotheses is that they 
deliver an explanat ion for the death of uninfected CD4+ 
T cells. This is in cotrast to the idea that accumulat ion of 
gp 160-CD4 complexes causes cytotoxicity, a process 
which would account only for the death of HIV-infccted 
cells_ This concept  has to compete with other mecha- 
nisms involved in kill ing of  HlV-infected cells; like lysis 
by' cytotoxic T lymphocytes.  'n'94 

However,  several lines of evidence suggest that not 
only infected but also uninfected cells are destroyed dur- 
ing HIV infection. For instance, histopathologic studies 
point to the fact thai loss of  CD4+ T cells is not restrict- 
ed to infected cells but uninfected CD4+ T cclls are sim- 
ilarly afl'ected in vivo. '~1 

In addit ion,  the n u m b e r  of  HIV-inliected cells is 
markedly lower than the number  of CD4+ T cells dying 
and being replaced day by day. ~5 Finally,  recent measure- 
ments in HIV-infected individuals undergoing antiviral 
combinat ion  therapy and mathematical  model l ing sug- 
gest that the number  of virions produced each day 
exceeds the number  of CD4+ T cells lost by a factor of 
approximately l(). j'2"3̀~a~, Since up to 99.99%, of the virus 

�9 q 7  particles produced are infect ion- incompetent  the ratio 
of  virions produced and cells destroyed each day may be 
too low to account  for lysis of only infected cells in the 
course of HIV disease. 

In conclusion,  al though the cause of  CD4+ T cell 
depletion in HIV-I infection might be multifactorial and 
is still elusive, several lines of evidence indicate that the 
envelope glycoprotein may contribute to this process. 
However,  the ideas ra.ised regarding the role of the gly- 

coprotein are diverse and can only partially be harmo- 
nized into common  concepts for the understanding of  the 
role of lhis molecule in the depletion of T helper cells. 
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